Characterizations of Orlicz-Sobolev Spaces by Means of Generalized Orlicz-Poincaré Inequalities
Let Φ be an N-function. We show that a function u∈LΦ(ℝn) belongs to the Orlicz-Sobolev space W1,Φ(ℝn) if and only if it satisfies the (generalized) Φ-Poincaré inequality. Under more restrictive assumptions on Φ, an analog of the result holds in a general metric measure space setting.
Príomhchruthaitheoir: | |
---|---|
Formáid: | Alt |
Teanga: | English |
Foilsithe / Cruthaithe: |
Wiley
2012-01-01
|
Sraith: | Journal of Function Spaces and Applications |
Rochtain ar líne: | http://dx.doi.org/10.1155/2012/426067 |