Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
Abstract Single-cell RNA-seq (scRNA-seq) data exhibits significant cell-to-cell variation due to technical factors, including the number of molecules detected in each cell, which can confound biological heterogeneity with technical effects. To address this, we present a modeling framework for the no...
Autores principales: | Christoph Hafemeister, Rahul Satija |
---|---|
Formato: | Artículo |
Lenguaje: | English |
Publicado: |
BMC
2019-12-01
|
Colección: | Genome Biology |
Materias: | |
Acceso en línea: | https://doi.org/10.1186/s13059-019-1874-1 |
Ejemplares similares
-
Normalization Methods on Single-Cell RNA-seq Data: An Empirical Survey
por: Nicholas Lytal, et al.
Publicado: (2020-02-01) -
Quantile normalization of single-cell RNA-seq read counts without unique molecular identifiers
por: F. William Townes, et al.
Publicado: (2020-07-01) -
Negative binomial additive model for RNA-Seq data analysis
por: Xu Ren, et al.
Publicado: (2020-05-01) -
Differentially expressed genes of RNA-seq data are suggested on the intersections of normalization techniques
por: Mohammad Elahimanesh, et al.
Publicado: (2024-03-01) -
Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data
por: Joseph N. Paulson, et al.
Publicado: (2017-10-01)