Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
Abstract Single-cell RNA-seq (scRNA-seq) data exhibits significant cell-to-cell variation due to technical factors, including the number of molecules detected in each cell, which can confound biological heterogeneity with technical effects. To address this, we present a modeling framework for the no...
Huvudupphovsmän: | Christoph Hafemeister, Rahul Satija |
---|---|
Materialtyp: | Artikel |
Språk: | English |
Publicerad: |
BMC
2019-12-01
|
Serie: | Genome Biology |
Ämnen: | |
Länkar: | https://doi.org/10.1186/s13059-019-1874-1 |
Liknande verk
Liknande verk
-
Normalization Methods on Single-Cell RNA-seq Data: An Empirical Survey
av: Nicholas Lytal, et al.
Publicerad: (2020-02-01) -
Quantile normalization of single-cell RNA-seq read counts without unique molecular identifiers
av: F. William Townes, et al.
Publicerad: (2020-07-01) -
Negative binomial additive model for RNA-Seq data analysis
av: Xu Ren, et al.
Publicerad: (2020-05-01) -
Differentially expressed genes of RNA-seq data are suggested on the intersections of normalization techniques
av: Mohammad Elahimanesh, et al.
Publicerad: (2024-03-01) -
Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data
av: Joseph N. Paulson, et al.
Publicerad: (2017-10-01)