Modeling antibody dynamics following herpes zoster indicates that higher varicella-zoster virus viremia generates more VZV-specific antibodies

IntroductionStudying antibody dynamics following re-exposure to infection and/or vaccination is crucial for a better understanding of fundamental immunological processes, vaccine development, and health policy research.MethodsWe adopted a nonlinear mixed modeling approach based on ordinary different...

Full description

Bibliographic Details
Main Authors: Hajar Besbassi, Irene Garcia-Fogeda, Mark Quinlivan, Judy Breuer, Steven Abrams, Niel Hens, Benson Ogunjimi, Philippe Beutels
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-02-01
Series:Frontiers in Immunology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fimmu.2023.1104605/full
_version_ 1797904915832504320
author Hajar Besbassi
Hajar Besbassi
Hajar Besbassi
Irene Garcia-Fogeda
Mark Quinlivan
Judy Breuer
Steven Abrams
Steven Abrams
Niel Hens
Niel Hens
Benson Ogunjimi
Benson Ogunjimi
Benson Ogunjimi
Benson Ogunjimi
Philippe Beutels
author_facet Hajar Besbassi
Hajar Besbassi
Hajar Besbassi
Irene Garcia-Fogeda
Mark Quinlivan
Judy Breuer
Steven Abrams
Steven Abrams
Niel Hens
Niel Hens
Benson Ogunjimi
Benson Ogunjimi
Benson Ogunjimi
Benson Ogunjimi
Philippe Beutels
author_sort Hajar Besbassi
collection DOAJ
description IntroductionStudying antibody dynamics following re-exposure to infection and/or vaccination is crucial for a better understanding of fundamental immunological processes, vaccine development, and health policy research.MethodsWe adopted a nonlinear mixed modeling approach based on ordinary differential equations (ODE) to characterize varicella-zoster virus specific antibody dynamics during and after clinical herpes zoster. Our ODEs models convert underlying immunological processes into mathematical formulations, allowing for testable data analysis. In order to cope with inter- and intra-individual variability, mixed models include population-averaged parameters (fixed effects) and individual-specific parameters (random effects). We explored the use of various ODE-based nonlinear mixed models to describe longitudinally collected markers of immunological response in 61 herpes zoster patients.ResultsStarting from a general formulation of such models, we study different plausible processes underlying observed antibody titer concentrations over time, including various individual-specific parameters. Among the converged models, the best fitting and most parsimonious model implies that once Varicella-zoster virus (VZV) reactivation is clinically apparent (i.e., Herpes-zoster (HZ) can be diagnosed), short-living and long-living antibody secreting cells (SASC and LASC, respectively) will not expand anymore. Additionally, we investigated the relationship between age and viral load on SASC using a covariate model to gain a deeper understanding of the population’s characteristics.ConclusionThe results of this study provide crucial and unique insights that can aid in improving our understanding of VZV antibody dynamics and in making more accurate projections regarding the potential impact of vaccines.
first_indexed 2024-04-10T09:56:37Z
format Article
id doaj.art-6bc551d73d25444bb0a1196312627be4
institution Directory Open Access Journal
issn 1664-3224
language English
last_indexed 2024-04-10T09:56:37Z
publishDate 2023-02-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Immunology
spelling doaj.art-6bc551d73d25444bb0a1196312627be42023-02-16T12:22:08ZengFrontiers Media S.A.Frontiers in Immunology1664-32242023-02-011410.3389/fimmu.2023.11046051104605Modeling antibody dynamics following herpes zoster indicates that higher varicella-zoster virus viremia generates more VZV-specific antibodiesHajar Besbassi0Hajar Besbassi1Hajar Besbassi2Irene Garcia-Fogeda3Mark Quinlivan4Judy Breuer5Steven Abrams6Steven Abrams7Niel Hens8Niel Hens9Benson Ogunjimi10Benson Ogunjimi11Benson Ogunjimi12Benson Ogunjimi13Philippe Beutels14Centre for Health Economics Research and Modeling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, BelgiumAntwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, BelgiumAntwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, BelgiumCentre for Health Economics Research and Modeling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, BelgiumDivision of Infection and Immunity, University College London, London, United KingdomDivision of Infection and Immunity, University College London, London, United KingdomGlobal Health Institute (GHI), Family Medicine and Population Health (FAMPOP), University of Antwerp, Antwerp, BelgiumData Science Institute (DSI), Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), UHasselt, Hasselt, BelgiumCentre for Health Economics Research and Modeling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, BelgiumData Science Institute (DSI), Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), UHasselt, Hasselt, BelgiumCentre for Health Economics Research and Modeling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, BelgiumAntwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, BelgiumAntwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, BelgiumDepartment of Paediatrics, Antwerp University Hospital, Edegem, BelgiumCentre for Health Economics Research and Modeling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, BelgiumIntroductionStudying antibody dynamics following re-exposure to infection and/or vaccination is crucial for a better understanding of fundamental immunological processes, vaccine development, and health policy research.MethodsWe adopted a nonlinear mixed modeling approach based on ordinary differential equations (ODE) to characterize varicella-zoster virus specific antibody dynamics during and after clinical herpes zoster. Our ODEs models convert underlying immunological processes into mathematical formulations, allowing for testable data analysis. In order to cope with inter- and intra-individual variability, mixed models include population-averaged parameters (fixed effects) and individual-specific parameters (random effects). We explored the use of various ODE-based nonlinear mixed models to describe longitudinally collected markers of immunological response in 61 herpes zoster patients.ResultsStarting from a general formulation of such models, we study different plausible processes underlying observed antibody titer concentrations over time, including various individual-specific parameters. Among the converged models, the best fitting and most parsimonious model implies that once Varicella-zoster virus (VZV) reactivation is clinically apparent (i.e., Herpes-zoster (HZ) can be diagnosed), short-living and long-living antibody secreting cells (SASC and LASC, respectively) will not expand anymore. Additionally, we investigated the relationship between age and viral load on SASC using a covariate model to gain a deeper understanding of the population’s characteristics.ConclusionThe results of this study provide crucial and unique insights that can aid in improving our understanding of VZV antibody dynamics and in making more accurate projections regarding the potential impact of vaccines.https://www.frontiersin.org/articles/10.3389/fimmu.2023.1104605/fullvaricella zoster virusherpes zosterantibody levelsordinary differential equationsnonlinear mixed-effects modelsmathematical modeling
spellingShingle Hajar Besbassi
Hajar Besbassi
Hajar Besbassi
Irene Garcia-Fogeda
Mark Quinlivan
Judy Breuer
Steven Abrams
Steven Abrams
Niel Hens
Niel Hens
Benson Ogunjimi
Benson Ogunjimi
Benson Ogunjimi
Benson Ogunjimi
Philippe Beutels
Modeling antibody dynamics following herpes zoster indicates that higher varicella-zoster virus viremia generates more VZV-specific antibodies
Frontiers in Immunology
varicella zoster virus
herpes zoster
antibody levels
ordinary differential equations
nonlinear mixed-effects models
mathematical modeling
title Modeling antibody dynamics following herpes zoster indicates that higher varicella-zoster virus viremia generates more VZV-specific antibodies
title_full Modeling antibody dynamics following herpes zoster indicates that higher varicella-zoster virus viremia generates more VZV-specific antibodies
title_fullStr Modeling antibody dynamics following herpes zoster indicates that higher varicella-zoster virus viremia generates more VZV-specific antibodies
title_full_unstemmed Modeling antibody dynamics following herpes zoster indicates that higher varicella-zoster virus viremia generates more VZV-specific antibodies
title_short Modeling antibody dynamics following herpes zoster indicates that higher varicella-zoster virus viremia generates more VZV-specific antibodies
title_sort modeling antibody dynamics following herpes zoster indicates that higher varicella zoster virus viremia generates more vzv specific antibodies
topic varicella zoster virus
herpes zoster
antibody levels
ordinary differential equations
nonlinear mixed-effects models
mathematical modeling
url https://www.frontiersin.org/articles/10.3389/fimmu.2023.1104605/full
work_keys_str_mv AT hajarbesbassi modelingantibodydynamicsfollowingherpeszosterindicatesthathighervaricellazostervirusviremiageneratesmorevzvspecificantibodies
AT hajarbesbassi modelingantibodydynamicsfollowingherpeszosterindicatesthathighervaricellazostervirusviremiageneratesmorevzvspecificantibodies
AT hajarbesbassi modelingantibodydynamicsfollowingherpeszosterindicatesthathighervaricellazostervirusviremiageneratesmorevzvspecificantibodies
AT irenegarciafogeda modelingantibodydynamicsfollowingherpeszosterindicatesthathighervaricellazostervirusviremiageneratesmorevzvspecificantibodies
AT markquinlivan modelingantibodydynamicsfollowingherpeszosterindicatesthathighervaricellazostervirusviremiageneratesmorevzvspecificantibodies
AT judybreuer modelingantibodydynamicsfollowingherpeszosterindicatesthathighervaricellazostervirusviremiageneratesmorevzvspecificantibodies
AT stevenabrams modelingantibodydynamicsfollowingherpeszosterindicatesthathighervaricellazostervirusviremiageneratesmorevzvspecificantibodies
AT stevenabrams modelingantibodydynamicsfollowingherpeszosterindicatesthathighervaricellazostervirusviremiageneratesmorevzvspecificantibodies
AT nielhens modelingantibodydynamicsfollowingherpeszosterindicatesthathighervaricellazostervirusviremiageneratesmorevzvspecificantibodies
AT nielhens modelingantibodydynamicsfollowingherpeszosterindicatesthathighervaricellazostervirusviremiageneratesmorevzvspecificantibodies
AT bensonogunjimi modelingantibodydynamicsfollowingherpeszosterindicatesthathighervaricellazostervirusviremiageneratesmorevzvspecificantibodies
AT bensonogunjimi modelingantibodydynamicsfollowingherpeszosterindicatesthathighervaricellazostervirusviremiageneratesmorevzvspecificantibodies
AT bensonogunjimi modelingantibodydynamicsfollowingherpeszosterindicatesthathighervaricellazostervirusviremiageneratesmorevzvspecificantibodies
AT bensonogunjimi modelingantibodydynamicsfollowingherpeszosterindicatesthathighervaricellazostervirusviremiageneratesmorevzvspecificantibodies
AT philippebeutels modelingantibodydynamicsfollowingherpeszosterindicatesthathighervaricellazostervirusviremiageneratesmorevzvspecificantibodies