群体知识图谱:分布式知识迁移与联邦式图谱推理
群体知识图谱是指通过群体协作,以去中心化或分布式方式管理和维护的知识图谱。相比现有的集中式管理的知识图谱,群体知识图谱具备知识确权、隐私保护、众包激励、可信溯责等特点。尝试探讨构建或应用群体知识图谱平台面临的技术挑战。其中分布式知识迁移考虑在一个分散自治的框架下,通过实现不同来源的多个知识图谱之间的知识迁移,缓解单个知识图谱的知识不完备问题。其主要难点是在充分保护知识的自治所有权的前提下,尽可能共享有用的知识,以增强各自的知识图谱表示。联邦式图谱推理也是考虑在一个分布式环境下,通过联邦学习机制实现隐私保护前提下的知识图谱推理。在分布式知识迁移中,强调在关系集合互相重叠的知识图谱间迁移与实体无关...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | zho |
Published: |
POSTS&TELECOM PRESS Co., LTD
2022-03-01
|
Series: | 智能科学与技术学报 |
Subjects: | |
Online Access: | http://www.infocomm-journal.com/znkx/CN/abstract/abstract172258.shtml |