Enabling uncertainty estimation in neural networks through weight perturbation for improved Alzheimer's disease classification
BackgroundThe willingness to trust predictions formulated by automatic algorithms is key in a wide range of domains. However, a vast number of deep architectures are only able to formulate predictions without associated uncertainty.PurposeIn this study, we propose a method to convert a standard neur...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2024-02-01
|
Series: | Frontiers in Neuroinformatics |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fninf.2024.1346723/full |