Bioengineering the neurovascular niche to study the interaction of neural stem cells and endothelial cells

The ability of mammalian neural stem cells (NSCs) to self-renew and differentiate throughout adulthood has made them ideal to study neurogenesis and attractive candidates for neurodegenerative disease therapies. In the adult mammalian brain, NSCs are maintained in the neurovascular niche (NVN) where...

Full description

Bibliographic Details
Main Authors: Max A. Winkelman, Abigail N. Koppes, Ryan A. Koppes, Guohao Dai
Format: Article
Language:English
Published: AIP Publishing LLC 2021-03-01
Series:APL Bioengineering
Online Access:http://dx.doi.org/10.1063/5.0027211
Description
Summary:The ability of mammalian neural stem cells (NSCs) to self-renew and differentiate throughout adulthood has made them ideal to study neurogenesis and attractive candidates for neurodegenerative disease therapies. In the adult mammalian brain, NSCs are maintained in the neurovascular niche (NVN) where they are found near the specialized blood vessels, suggesting that brain endothelial cells (BECs) are prominent orchestrators of NSC fate. However, most of the current knowledge of the mammalian NVN has been deduced from nonhuman studies. To circumvent the challenges of in vivo studies, in vitro models have been developed to better understand the reciprocal cellular mechanisms of human NSCs and BECs. This review will cover the current understanding of mammalian NVN biology, the effects of endothelial cell-derived signals on NSC fate, and the in vitro models developed to study the interactions between NSCs and BECs.
ISSN:2473-2877