PM2.5 Forecasting Model Using a Combination of Deep Learning and Statistical Feature Selection
This paper proposed a PM 2.5 forecasting model using Long Short-Term Model (LSTM) sequence to sequence combined with the statistical method. Correlation Analysis, XGBoost, and Chemical processed are used as the methods to select the essential features. The air pollution data is extracted from Taiwan...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9422751/ |