Research and experiment on global path planning for indoor AGV via improved ACO and fuzzy DWA

In order to obtain an optimal trajectory for indoor AGV, this paper combined an improved ACO and fuzzy DWA (IACO-DWA) algorithm, which can provide an optimal path with collision-free under higher optimization efficiency. The highlights of this paper are detailed as follows: Firstly, an improved adap...

Full description

Bibliographic Details
Main Authors: Zhen Zhou, Chenchen Geng, Buhu Qi, Aiwen Meng, Jinzhuang Xiao
Format: Article
Language:English
Published: AIMS Press 2023-10-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2023846?viewType=HTML
Description
Summary:In order to obtain an optimal trajectory for indoor AGV, this paper combined an improved ACO and fuzzy DWA (IACO-DWA) algorithm, which can provide an optimal path with collision-free under higher optimization efficiency. The highlights of this paper are detailed as follows: Firstly, an improved adaptive pseudo-random transition strategy is adopted in the state transition probability with an angle factor. A reward and punishment mechanism is introduced in the pheromone updating strategy, then a path optimization strategy called IACO is proposed for the more optimized path. Secondly, IDWA adopted three fuzzy controllers of direction, security and adjustment coefficients through evaluating directional and safety principles, then improving the angular velocity by processing the linear velocity with linear normalization. By adapting to the changes of the environment, the IDWA parameters can be dynamically adjusted to ensure the optimal running speed and reasonable path of AGV. Thirdly, aiming to deal with the path-planning problem in complex environments, we combined IACO with IDWA, the hybrid algorithm involves dividing the globally optimal path obtained from IACO planning into multiple virtual sub-target points. IDWA completes the path planning by switching between these local target points, thereby improving the efficiency of the path planning. Finally, simulations is verified by Matlab and experiment results on the QBot2e platform are given to verify IACO-DWA algorithm's effectiveness and high performance.
ISSN:1551-0018