Sulfadiazine Exerts Potential Anticancer Effect in HepG2 and MCF7 Cells by Inhibiting TNFα, IL1b, COX-1, COX-2, 5-LOX Gene Expression: Evidence from In Vitro and Computational Studies

Drug repurposing is a promising approach that has the potential to revolutionize the drug discovery and development process. By leveraging existing drugs, we can bring new treatments to patients more quickly and affordably. Anti-inflammatory drugs have been shown to target multiple pathways involved...

Full description

Bibliographic Details
Main Authors: Mohamed Gomaa, Wael Gad, Dania Hussein, Faheem Hyder Pottoo, Nada Tawfeeq, Mansour Alturki, Dhay Alfahad, Razan Alanazi, Ismail Salama, Mostafa Aziz, Aboelnasr Zahra, Abeer Hanafy
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Pharmaceuticals
Subjects:
Online Access:https://www.mdpi.com/1424-8247/17/2/189
Description
Summary:Drug repurposing is a promising approach that has the potential to revolutionize the drug discovery and development process. By leveraging existing drugs, we can bring new treatments to patients more quickly and affordably. Anti-inflammatory drugs have been shown to target multiple pathways involved in cancer development and progression. This suggests that they may be more effective in treating cancer than drugs that target a single pathway. Cell viability was measured using the MTT assay. The expression of genes related to inflammation (TNFa, IL1b, COX-1, COX-2, and 5-LOX) was measured in HepG2, MCF7, and THLE-2 cells using qPCR. The levels of TNFα, IL1b, COX-1, COX-2, and 5-LOX were also measured in these cells using an ELISA kit. An enzyme binding assay revealed that sulfadiazine expressed weaker inhibitory activity against COX-2 (IC<sub>50</sub> = 5.27 μM) in comparison with the COX-2 selective reference inhibitor celecoxib (COX-2 IC<sub>50</sub> = 1.94 μM). However, a more balanced inhibitory effect was revealed for sulfadiazine against the COX/LOX pathway with greater affinity towards 5-LOX (IC<sub>50</sub> = 19.1 μM) versus COX-1 (IC<sub>50</sub> = 18.4 μM) as compared to celecoxib (5-LOX IC<sub>50</sub> = 16.7 μM, and COX-1 IC<sub>50</sub> = 5.9 μM). MTT assays revealed the IC<sub>50</sub> values of 245.69 ± 4.1 µM and 215.68 ± 3.8 µM on HepG2 and MCF7 cell lines, respectively, compared to the standard drug cisplatin (66.92 ± 1.8 µM and 46.83 ± 1.3 µM, respectively). The anti-inflammatory effect of sulfadiazine was also depicted through its effect on the levels of inflammatory markers and inflammation-related genes (TNFα, IL1b, COX-1, COX-2, 5-LOX). Molecular simulation studies revealed key binding interactions that explain the difference in the activity profiles of sulfadiazine compared to celecoxib. The results suggest that sulfadiazine exhibited balanced inhibitory activity against the 5-LOX/COX-1 enzymes compared to the selective COX-2 inhibitor, celecoxib. These findings highlight the potential of sulfadiazine as a potential anticancer agent through balanced inhibitory activity against the COX/LOX pathway and reduction in the expression of inflammatory genes.
ISSN:1424-8247