Type Synthesis of Parallel 2R1T Remote Center of Motion Mechanisms Based on Screw Theory

The remote center of motion (RCM) mechanism is an important part of a minimally invasive surgery (MIS) robot. As a practical type of RCM mechanisms, 2R1T RCM mechanisms are synthesized in this paper using a modified screw theory method. Differing from the conventional screw theory method, the modifi...

Full description

Bibliographic Details
Main Authors: Huang Long, Guang Chenhan, Yang Yang, Su Peng
Format: Article
Language:English
Published: EDP Sciences 2017-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/20179508009
Description
Summary:The remote center of motion (RCM) mechanism is an important part of a minimally invasive surgery (MIS) robot. As a practical type of RCM mechanisms, 2R1T RCM mechanisms are synthesized in this paper using a modified screw theory method. Differing from the conventional screw theory method, the modified method brings forward the assessment of different wrench systems, and proposes several general subchains to satisfy each geometrical condition of the wrench system, which can ensure the motion continuity to a great degree. First, the motion pattern and the twist system of 2R1T RCM mechanisms are presented. According to the reciprocal rules of screw theory, three corresponding wrench systems, along with the geometrical conditions for them, are enumerated. After assessing these wrench systems by the comparison of their geometrical conditions, the optimum wrench system is selected for synthesis, and then it is decomposed into sub-wrench-systems. To satisfy each condition of the sub-wrench-systems, several general subchains are proposed, and consequently some preferred general chains are constructed by the serial assembly of the corresponding subchains. These general chains are applied to the leg synthesis. Finally, practical examples of 2R1T RCM mechanisms are constructed by assembling the legs.
ISSN:2261-236X