A comparative study of multiple instance learning methods for cancer detection using T-cell receptor sequences

As a branch of machine learning, multiple instance learning (MIL) learns from a collection of labeled bags, each containing a set of instances. The learning process is weakly supervised due to ambiguous instance labels. Since its emergence, MIL has been applied to solve various problems including co...

Full description

Bibliographic Details
Main Authors: Danyi Xiong, Ze Zhang, Tao Wang, Xinlei Wang
Format: Article
Language:English
Published: Elsevier 2021-01-01
Series:Computational and Structural Biotechnology Journal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2001037021002191