توسعه‌ی الگوریتم بازشناسی اعداد دست‌نویس فارسی، بر پایه‌ی الگوریتم‌های طبقه‌بندی شبکه‌ی عصبی چندلایه و احتمالاتی، به کمک مراکز خوشه

در این پژوهش تلاش شده است تا با ارائه‌ی الگوریتمی بهبودیافته و مبتنی بر خوشه‌بندی، بازشناسی اعداد دست‌نویس فارسی با دقت قابل توجهی صورت پذیرد. بر این اساس، آموزش و بازشناسی الگوها به کمک شبکه‌ی عصبی احتمالاتی و چندلایه‌ی پرسپترون میسر شده است، به این صورت که پس از استخراج دو دسته ویژگی مکان مشخصه و...

Full description

Bibliographic Details
Main Authors: علی میری, مجید خدمتی
Format: Article
Language:fas
Published: Sharif University Of Technology 2023-09-01
Series:مهندسی صنایع و مدیریت شریف
Subjects:
Online Access:https://sjie.journals.sharif.edu/article_22988_d529e26f630e459ba4aec5835540a59a.pdf
Description
Summary:در این پژوهش تلاش شده است تا با ارائه‌ی الگوریتمی بهبودیافته و مبتنی بر خوشه‌بندی، بازشناسی اعداد دست‌نویس فارسی با دقت قابل توجهی صورت پذیرد. بر این اساس، آموزش و بازشناسی الگوها به کمک شبکه‌ی عصبی احتمالاتی و چندلایه‌ی پرسپترون میسر شده است، به این صورت که پس از استخراج دو دسته ویژگی مکان مشخصه و ناحیه‌یی از داده‌های آموزشی، داده‌های هریک از کلاس‌های دهگانه بر اساس هر ویژگی با استفاده از روش‌های پیوند کامل، P‌A‌M و F‌C‌M خوشه‌بندی شده و کلاس‌های دهگانه‌ی جدید حاصل از خوشه‌بندی، توسط یکی از دو الگوریتم طبقه‌بندی کننده آموزش می‌بینند. تعداد بهینه خوشه‌های هر کلاس با استفاده از الگوریتم بهینه‌سازی جست‌وجوی ممنوعه با تابع برازندگی نرخ بازشناسی تعیین می‌شود. میزان دقت الگوریتم در نهایت با استفاده از داده‌های آزمایش مورد سنجش قرار می‌گیرد و با توجه به نتایج ملاحظه می‌شود که الگوریتم پیشنهادی، بازشناسی اعداد دست‌نویس فارسی را با دقت بالایی انجام می‌دهد.
ISSN:2676-4741
2676-475X