Activated Platelets Autocrine 5-Hydroxytryptophan Aggravates Sepsis-Induced Acute Lung Injury by Promoting Neutrophils Extracellular Traps Formation

Excessive neutrophil extracellular trap (NET) formation is an important contributor to sepsis-induced acute lung injury (ALI). Recent reports indicate that platelets can induce neutrophil extracellular trap formation. However, the specific mechanism remains unclear. Tph1 gene, which encodes the rate...

Full description

Bibliographic Details
Main Authors: Yumeng Huang, Qian Ji, Yanyan Zhu, Shengqiao Fu, Shuangwei Chen, Liangmei Chu, Yongfei Ren, Yue Wang, Xuan Lei, Jia Gu, Ningzheng Tai, Dadong Liu
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-01-01
Series:Frontiers in Cell and Developmental Biology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fcell.2021.777989/full
Description
Summary:Excessive neutrophil extracellular trap (NET) formation is an important contributor to sepsis-induced acute lung injury (ALI). Recent reports indicate that platelets can induce neutrophil extracellular trap formation. However, the specific mechanism remains unclear. Tph1 gene, which encodes the rate-limiting enzyme for peripheral 5-hydroxytryptophan (5-HT) synthesis, was knocked out in mice to simulate peripheral 5-HT deficiency. Cecal ligation and puncture (CLP) surgery was performed to induce sepsis. We found that peripheral 5-HT deficiency reduced NET formation in lung tissues, alleviated sepsis-induced lung inflammatory injury, and reduced the mortality rate of CLP mice. In addition, peripheral 5-HT deficiency was shown to reduce the accumulation of platelets and NETs in the lung of septic mice. We found that platelets from wild-type (WT), but not Tph1 knockout (Tph1−/−), mice promote lipopolysaccharide (LPS)-induced NET formation. Exogenous 5-HT intervention increased LPS-induced NET formation when Tph1−/− platelets were co-cultured with WT neutrophils. Therefore, our study uncovers a mechanism by which peripheral 5-HT aggravated sepsis-induced ALI by promoting NET formation in the lung of septic mice.
ISSN:2296-634X