EN1 promotes lung metastasis of salivary adenoid cystic carcinoma by regulating the PI3K-AKT pathway and epithelial-mesenchymal transition

Abstract Background Engrailed homeobox 1 (EN1) is a candidate oncogene that is epigenetically modified in salivary adenoid cystic carcinoma (SACC). We investigated the expression of EN1 in SACC tissues and cells, EN1 promoter methylation, and the role of EN1 in tumour progression in SACC. Methods Th...

Full description

Bibliographic Details
Main Authors: Yajuan Cui, Ye Zhang, Yuping Liu, Zheng Zhou, Lijing Zhu, Chuan-Xiang Zhou
Format: Article
Language:English
Published: BMC 2024-01-01
Series:Cancer Cell International
Subjects:
Online Access:https://doi.org/10.1186/s12935-024-03230-7
Description
Summary:Abstract Background Engrailed homeobox 1 (EN1) is a candidate oncogene that is epigenetically modified in salivary adenoid cystic carcinoma (SACC). We investigated the expression of EN1 in SACC tissues and cells, EN1 promoter methylation, and the role of EN1 in tumour progression in SACC. Methods Thirty-five SACC samples were screened for key transcription factors that affect tumour progression. In vitro and in vivo assays were performed to determine the viability, tumorigenicity, and metastatic ability of SACC cells with modulated EN1 expression. Quantitative methylation-specific polymerase chain reaction analysis was performed on SACC samples. Results EN1 was identified as a transcription factor that was highly overexpressed in SACC tissues, regardless of clinical stage and histology subtype, and its level of expression correlated with distant metastasis. EN1 promoted cell invasion and migration through epithelial-mesenchymal transition in vitro and enhanced SACC metastasis to the lung in vivo. RNA-seq combined with in vitro assays indicated that EN1 might play an oncogenic role in SACC through the PI3K-AKT pathway. EN1 mRNA levels were negatively correlated with promoter hypermethylation, and inhibition of DNA methylation by 5-aza-dC increased EN1 expression. Conclusions The transcription factor EN1 is overexpressed in SACC under methylation regulation and plays a pivotal role in SACC progression through the PI3K-AKT pathway. These results suggest that EN1 may be a diagnostic biomarker and a potential therapeutic target for SACC.
ISSN:1475-2867