Research of cooling tower filler based on radial basis function artificial neural network (RBF ANN)
Abstract The filler is the core component of the cooling tower, filler performance refers to both its thermal and flow resistance characteristics, which use empirical formulas of tower characteristic N, volumetric mass transfer coefficient βxv, and pressure drop ΔP obtained through experimentation u...
主要な著者: | Lixin Zhang, Jie Chen, Shunan Zhao, Yongbao Chen, Huijuan Song, Jingnan Liu |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Wiley
2023-08-01
|
シリーズ: | Energy Science & Engineering |
主題: | |
オンライン・アクセス: | https://doi.org/10.1002/ese3.1498 |
類似資料
-
Review on Application and Optimization of Cooling Technology for Cooling Tower
著者:: Yu Zhikang, 等
出版事項: (2024-01-01) -
Cooling towers/
著者:: 292645 Gurney, J. D., 等
出版事項: (1966) - Design of cooling towers
-
Water cooling towers
著者:: 8096 British Standards Institution -
Cooling towers : principles and practice/
著者:: 396823 Hill, G. B., 等
出版事項: (1990)