Development of a Class-Based Multiple Endmember Spectral Mixture Analysis (C-MESMA) Approach for Analyzing Urban Environments
Multiple endmember spectral mixture analysis (MESMA) has been widely applied for estimating fractional land covers from remote sensing imagery. MESMA has proven effective in addressing inter-class and intra-class endmember variability by allowing pixel-specific endmember combinations. This method, h...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2016-04-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | http://www.mdpi.com/2072-4292/8/4/349 |