Development of a Class-Based Multiple Endmember Spectral Mixture Analysis (C-MESMA) Approach for Analyzing Urban Environments

Multiple endmember spectral mixture analysis (MESMA) has been widely applied for estimating fractional land covers from remote sensing imagery. MESMA has proven effective in addressing inter-class and intra-class endmember variability by allowing pixel-specific endmember combinations. This method, h...

Full description

Bibliographic Details
Main Authors: Yingbin Deng, Changshan Wu
Format: Article
Language:English
Published: MDPI AG 2016-04-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/8/4/349