A SHOCK LAYER ARISING AS THE SOURCE TERM COLLAPSES IN THE P(X)-LAPLACIAN EQUATION

We study the Cauchy–Dirichlet problem for the p(x)-Laplacian equation with a regular finite nonlinear minor term. The minor term depends on a small parameter ε > 0 and, as ε → 0, converges weakly* to the expression incorporating the Dirac delta function, which models a shock (impulsive) loading....

Full description

Bibliographic Details
Main Authors: S. N. Antontsev, I. V. Kuznetsov, S. A. Sazhenkov
Format: Article
Language:English
Published: Petrozavodsk State University 2020-11-01
Series:Проблемы анализа
Subjects:
Online Access:http://issuesofanalysis.petrsu.ru/article/genpdf.php?id=8990&lang=ru