TMEM266 is a functional voltage sensor regulated by extracellular Zn2+

Voltage-activated ion channels contain S1-S4 domains that sense membrane voltage and control opening of ion-selective pores, a mechanism that is crucial for electrical signaling. Related S1-S4 domains have been identified in voltage-sensitive phosphatases and voltage-activated proton channels, both...

Full description

Bibliographic Details
Main Authors: Ferenc Papp, Suvendu Lomash, Orsolya Szilagyi, Erika Babikow, Jaime Smith, Tsg-Hui Chang, Maria Isabel Bahamonde, Gilman Ewan Stephen Toombes, Kenton Jon Swartz
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2019-02-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/42372
Description
Summary:Voltage-activated ion channels contain S1-S4 domains that sense membrane voltage and control opening of ion-selective pores, a mechanism that is crucial for electrical signaling. Related S1-S4 domains have been identified in voltage-sensitive phosphatases and voltage-activated proton channels, both of which lack associated pore domains. hTMEM266 is a protein of unknown function that is predicted to contain an S1-S4 domain, along with partially structured cytoplasmic termini. Here we show that hTMEM266 forms oligomers, undergoes both rapid (µs) and slow (ms) structural rearrangements in response to changes in voltage, and contains a Zn2+ binding site that can regulate the slow conformational transition. Our results demonstrate that the S1-S4 domain in hTMEM266 is a functional voltage sensor, motivating future studies to identify cellular processes that may be regulated by the protein. The ability of hTMEM266 to respond to voltage on the µs timescale may be advantageous for designing new genetically encoded voltage indicators.
ISSN:2050-084X