PIP4Ks Suppress Insulin Signaling through a Catalytic-Independent Mechanism

Summary: Insulin stimulates the conversion of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) to phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3), which mediates downstream cellular responses. PI(4,5)P2 is produced by phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) and by phosphatidylino...

Full description

Bibliographic Details
Main Authors: Diana G. Wang, Marcia N. Paddock, Mark R. Lundquist, Janet Y. Sun, Oksana Mashadova, Solomon Amadiume, Timothy W. Bumpus, Cindy Hodakoski, Benjamin D. Hopkins, Matthew Fine, Amanda Hill, T. Jonathan Yang, Jeremy M. Baskin, Lukas E. Dow, Lewis C. Cantley
Format: Article
Language:English
Published: Elsevier 2019-05-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124719305431
Description
Summary:Summary: Insulin stimulates the conversion of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) to phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3), which mediates downstream cellular responses. PI(4,5)P2 is produced by phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) and by phosphatidylinositol-5-phosphate 4-kinases (PIP4Ks). Here, we show that the loss of PIP4Ks (PIP4K2A, PIP4K2B, and PIP4K2C) in vitro results in a paradoxical increase in PI(4,5)P2 and a concomitant increase in insulin-stimulated production of PI(3,4,5)P3. The reintroduction of either wild-type or kinase-dead mutants of the PIP4Ks restored cellular PI(4,5)P2 levels and insulin stimulation of the PI3K pathway, suggesting a catalytic-independent role of PIP4Ks in regulating PI(4,5)P2 levels. These effects are explained by an increase in PIP5K activity upon the deletion of PIP4Ks, which normally suppresses PIP5K activity through a direct binding interaction mediated by the N-terminal motif VMLΦPDD of PIP4K. Our work uncovers an allosteric function of PIP4Ks in suppressing PIP5K-mediated PI(4,5)P2 synthesis and insulin-dependent conversion to PI(3,4,5)P3 and suggests that the pharmacological depletion of PIP4K enzymes could represent a strategy for enhancing insulin signaling. : PI(4,5)P2 is produced by both phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) and by phosphatidylinositol-5-phosphate 4-kinases (PIP4Ks). Wang et al. report an allosteric function of a conserved N-terminal motif of PIP4Ks in suppressing PIP5K-mediated PI(4,5)P2 synthesis and insulin-dependent conversion to PI(3,4,5)P3. This non-catalytic role has implications for the development of PIP4K targeted therapies. Keywords: PIP4K, PI5P4K, PIP5K, PI3K, Akt, insulin, signaling, PI(4,5)P2, PI(3,4,5)P3, RTK
ISSN:2211-1247