Neural Metric Factorization for Recommendation

All current recommendation algorithms, when modeling user–item interactions, basically use dot product. This dot product calculation is derived from matrix factorization. We argue that an inherent drawback of matrix factorization is that latent semantic vectors of users or items sometimes do not sat...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Xiaoxin Sun, Liqiu Gong, Zhichao Han, Peng Zhao, Junchao Yu, Suhua Wang
Aineistotyyppi: Artikkeli
Kieli:English
Julkaistu: MDPI AG 2022-02-01
Sarja:Mathematics
Aiheet:
Linkit:https://www.mdpi.com/2227-7390/10/3/503