Induction of G2/M Cell Cycle Arrest and Apoptosis by Genistein in Human Bladder Cancer T24 Cells through Inhibition of the ROS-Dependent PI3k/Akt Signal Transduction Pathway

We examined the anti-cancer effect of genistein, a soy-derived isoflavone, in human bladder transitional cell carcinoma T24 cells. According to our data, genistein induced G2/M phase arrest of the cell cycle and apoptosis. Genistein down-regulated the levels of cyclin A and cyclin B1, but up-regulat...

Full description

Bibliographic Details
Main Authors: Cheol Park, Hee-Jae Cha, Hyesook Lee, Hyun Hwang-Bo, Seon Yeong Ji, Min Yeong Kim, Su Hyun Hong, Jin-Woo Jeong, Min Ho Han, Sung Hyun Choi, Cheng-Yun Jin, Gi-Young Kim, Yung Hyun Choi
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Antioxidants
Subjects:
Online Access:https://www.mdpi.com/2076-3921/8/9/327
Description
Summary:We examined the anti-cancer effect of genistein, a soy-derived isoflavone, in human bladder transitional cell carcinoma T24 cells. According to our data, genistein induced G2/M phase arrest of the cell cycle and apoptosis. Genistein down-regulated the levels of cyclin A and cyclin B1, but up-regulated the levels of p21WAF1/CIP1, cyclin-dependent kinase (Cdk) inhibitor, that was complexed with Cdc2 and Cdk2. Furthermore, genistein induced the activation of caspases (caspase-3, -8 and -9), and cleavage of poly (ADP-ribose) polymerase cleavage. However, genistein-induced apoptosis was significantly inhibited by a pan-caspase inhibitor, indicating that the induction of apoptosis by genestein was caspase-dependent. In addition, genistein increased the cytosolic release of cytochrome <i>c</i> by increasing the Bax/Bcl-2 ratio and destroying mitochondria integrity. Moreover, genistein inactivated the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, while LY294002, a PI3K/Akt inhibitor, increased the apoptosis-inducing effect of genistein. Genistein further increased the accumulation of reactive oxygen species (ROS), which was significantly suppressed by N-acetyl cysteine (NAC), a ROS scavenger, and in particular, NAC prevented genistein-mediated inactivation of PI3K/Akt signaling, G2/M arrest and apoptosis. Therefore, the present results indicated that genistein promoted apoptosis induction in human bladder cancer T24 cells, which was associated with G2/M phase cell cycle arrest via regulation of ROS-dependent PI3K/Akt signaling pathway.
ISSN:2076-3921