On Grundy Total Domination Number in Product Graphs
A longest sequence (v1, . . ., vk) of vertices of a graph G is a Grundy total dominating sequence of G if for all i, N(υj)\∪j=1i-1N(υj)≠∅N({\upsilon _j})\backslash \bigcup\nolimits_{j = 1}^{i - 1} {N({\upsilon _j})} \ne \emptyset . The length k of the sequence is called the Grundy total domination...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Zielona Góra
2021-02-01
|
Series: | Discussiones Mathematicae Graph Theory |
Subjects: | |
Online Access: | https://doi.org/10.7151/dmgt.2184 |