On Grundy Total Domination Number in Product Graphs

A longest sequence (v1, . . ., vk) of vertices of a graph G is a Grundy total dominating sequence of G if for all i, N(υj)\∪j=1i-1N(υj)≠∅N({\upsilon _j})\backslash \bigcup\nolimits_{j = 1}^{i - 1} {N({\upsilon _j})} \ne \emptyset . The length k of the sequence is called the Grundy total domination...

Full description

Bibliographic Details
Main Authors: Brešar Boštjan, Bujtás Csilla, Gologranc Tanja, Klavžar Sandi, Košmrlj Gašper, Marc Tilen, Patkós Balázs, Tuza Zsolt, vizer Máté
Format: Article
Language:English
Published: University of Zielona Góra 2021-02-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.2184