On morphisms from $\protect \mathbb{P}^3$ to $\protect \mathbb{G}(1,3)$
Every morphism from $\mathbb{P}^n$ to $\mathbb{G}(k,m)$ is constant if $m, and nonconstant morphisms from $\mathbb{P}^n$ to $\mathbb{G}(k,n)$ rarely appear when $0. In this setting, Tango proved that a morphism from $\mathbb{P}^n$ to $\mathbb{G}(1,n)$ is constant if $n\notin \lbrace 3,5\rbrace $. He...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2021-09-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.219/ |