On morphisms from $\protect \mathbb{P}^3$ to $\protect \mathbb{G}(1,3)$

Every morphism from $\mathbb{P}^n$ to $\mathbb{G}(k,m)$ is constant if $m, and nonconstant morphisms from $\mathbb{P}^n$ to $\mathbb{G}(k,n)$ rarely appear when $0. In this setting, Tango proved that a morphism from $\mathbb{P}^n$ to $\mathbb{G}(1,n)$ is constant if $n\notin \lbrace 3,5\rbrace $. He...

Full description

Bibliographic Details
Main Author: Sierra, José Carlos
Format: Article
Language:English
Published: Académie des sciences 2021-09-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.219/