Language as a latent sequence: Deep latent variable models for semi-supervised paraphrase generation
This paper explores deep latent variable models for semi-supervised paraphrase generation, where the missing target pair for unlabelled data is modelled as a latent paraphrase sequence. We present a novel unsupervised model named variational sequence auto-encoding reconstruction (VSAR), which perfor...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
KeAi Communications Co. Ltd.
2023-01-01
|
Series: | AI Open |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2666651023000025 |