Study on Active Fault Tolerant Flight Control Systems for Quadrotor UAV with Actuator Failures
The rotor blades' fatigue fracture of Quadrotor UAV easily causes the instability or even crash of the UAV due to high-load and long-endurance flight missions. Under this circumstances, an active fault-tolerant flight controller of Quadrotor UAV based on integral sliding mode is proposed to str...
Format: | Article |
---|---|
Language: | zho |
Published: |
EDP Sciences
2018-08-01
|
Series: | Xibei Gongye Daxue Xuebao |
Subjects: | |
Online Access: | https://www.jnwpu.org/articles/jnwpu/pdf/2018/04/jnwpu2018364p748.pdf |
Summary: | The rotor blades' fatigue fracture of Quadrotor UAV easily causes the instability or even crash of the UAV due to high-load and long-endurance flight missions. Under this circumstances, an active fault-tolerant flight controller of Quadrotor UAV based on integral sliding mode is proposed to strengthen the fault-tolerant capability of UAV's attitude and position. First of all, nonlinear mathematical model of quadrotor UAV with actuator failures is derived by kinematics and dynamics analysis. Secondly, a fault observer is constructed to determine when the actuator failure will occur, subsequently the UAV's attitude and position flight controllers are compensated using integral sliding mode control. The digital simulation and flight test shows that the controller has powerful fault-tolerant capacity and preferable dynamic and static characteristics which can stabilize the attitude and position responses of UAV when partial failure of single blade occurs. |
---|---|
ISSN: | 1000-2758 2609-7125 |