Pular para o conteúdo
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
Avançada
  • Decentralised federated learni...
  • Citar
  • Enviar por SMS
  • Enviar por e-mail
  • Imprimir
  • Exportar registro
    • Exportar para RefWorks
    • Exportar para EndNoteWeb
    • Exportar para EndNote
  • Link permanente
Decentralised federated learning with adaptive partial gradient aggregation

Decentralised federated learning with adaptive partial gradient aggregation

Federated learning aims to collaboratively train a machine learning model with possibly geo-distributed workers, which is inherently communication constrained. To achieve communication efficiency, the conventional federated learning algorithms allow the worker to decrease the communication frequency...

ver descrição completa

Detalhes bibliográficos
Principais autores: Jingyan Jiang, Liang Hu
Formato: Artigo
Idioma:English
Publicado em: Wiley 2020-05-01
coleção:CAAI Transactions on Intelligence Technology
Assuntos:
learning (artificial intelligence)
gradient methods
communication frequency
parameter server design
nodes-to-server bandwidths
stochastic gradient descent training
end-to-end training
real-world federated learning scenarios
adaptive partial gradient aggregation method
gradient partial level decentralised
partial gradient exchange mechanism
node-to-node bandwidth
communication time
adaptive model
training time
decentralised federated learning
machine learning model
geo-distributed workers
inherently communication
communication efficiency
conventional federated learning algorithms
Acesso em linha:https://digital-library.theiet.org/content/journals/10.1049/trit.2020.0082
  • Itens
  • Descrição
  • Registros relacionados
  • Registro fonte

Internet

https://digital-library.theiet.org/content/journals/10.1049/trit.2020.0082

Registros relacionados

  • A Derivative-Incorporated Adaptive Gradient Method for Federated Learning
    por: Huimin Gao, et al.
    Publicado em: (2023-08-01)
  • A Novel Approach for Differential Privacy-Preserving Federated Learning
    por: Anis Elgabli, et al.
    Publicado em: (2025-01-01)
  • FedADT: An Adaptive Method Based on Derivative Term for Federated Learning
    por: Huimin Gao, et al.
    Publicado em: (2023-06-01)
  • Federated Learning Under a Digital Communication Model
    por: Pourya Behmandpoor, et al.
    Publicado em: (2024-01-01)
  • Fed-DeepONet: Stochastic Gradient-Based Federated Training of Deep Operator Networks
    por: Christian Moya, et al.
    Publicado em: (2022-09-01)

Opções de Busca

  • Histórico de buscas
  • Busca Avançada

Encontrar Mais

  • Navegar o acervo
  • Navegar por ordem alfabética
  • Explorar canais
  • Bibliografia Recomendada
  • Novos itens

Precisa de ajuda?

  • Dicas de Busca
  • Serviço de Referência
  • Perguntas Frequentes