Boosting Lightweight Sentence Embeddings with Knowledge Transfer from Advanced Models: A Model-Agnostic Approach

In this study, we investigate knowledge transfer between two distinct sentence embedding models: a computationally demanding, highly performant model and a lightweight model derived from word vector averaging. Our objective is to augment the representational power of the lightweight model by exploit...

Volledige beschrijving

Bibliografische gegevens
Hoofdauteurs: Kadir Gunel, Mehmet Fatih Amasyali
Formaat: Artikel
Taal:English
Gepubliceerd in: MDPI AG 2023-11-01
Reeks:Applied Sciences
Onderwerpen:
Online toegang:https://www.mdpi.com/2076-3417/13/23/12586