Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network
Fully homomorphic encryption (FHE) is a prospective tool for privacy-preserving machine learning (PPML). Several PPML models have been proposed based on various FHE schemes and approaches. Although FHE schemes are suitable as tools for implementing PPML models, previous PPML models based on FHE, suc...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2022-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9734024/ |