RAP1/TERF2IP—A Multifunctional Player in Cancer Development

Mammalian RAP1 (TERF2IP), the most conserved shelterin component, plays a pleiotropic role in the regulation of a variety of cellular processes, including cell metabolism, DNA damage response, and NF-κB signaling, beyond its canonical telomeric role. Moreover, it has been demonstrated to be involved...

Full description

Bibliographic Details
Main Authors: Anna Deregowska, Maciej Wnuk
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Cancers
Subjects:
Online Access:https://www.mdpi.com/2072-6694/13/23/5970
Description
Summary:Mammalian RAP1 (TERF2IP), the most conserved shelterin component, plays a pleiotropic role in the regulation of a variety of cellular processes, including cell metabolism, DNA damage response, and NF-κB signaling, beyond its canonical telomeric role. Moreover, it has been demonstrated to be involved in oncogenesis, progression, and chemoresistance in human cancers. Several mutations and different expression patterns of RAP1 in cancers have been reported. However, the functions and mechanisms of RAP1 in various cancers have not been extensively studied, suggesting the necessity of further investigations. In this review, we summarize the main roles of RAP1 in different mechanisms of cancer development and chemoresistance, with special emphasis on the contribution of RAP1 mutations, expression patterns, and regulation by non-coding RNA, and briefly discuss telomeric and non-telomeric functions.
ISSN:2072-6694