Improving the Thickness Uniformity of Micro Gear by Multi-Step, Self-Aligned Lithography and Electroforming

The thickness nonuniformity of an electroformed layer is a bottleneck problem for electroformed micro metal devices. In this paper, a new fabrication method is proposed to improve the thickness uniformity of micro gear, which is the key element of various microdevices. The effect of the thickness of...

Full description

Bibliographic Details
Main Authors: Huan Wang, Jing Xie, Tao Fan, Dapeng Sun, Chaobo Li
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/14/4/775
Description
Summary:The thickness nonuniformity of an electroformed layer is a bottleneck problem for electroformed micro metal devices. In this paper, a new fabrication method is proposed to improve the thickness uniformity of micro gear, which is the key element of various microdevices. The effect of the thickness of the photoresist on the uniformity was studied by simulation analysis, which showed that as the thickness of the photoresist increased, the thickness nonuniformity of the electroformed gear should decrease due to the reduced edge effect of the current density. Differently from the traditional method performed by one-step front lithography and electroforming, multi-step, self-aligned lithography and electroforming are used to fabricate micro gear structures in proposed method, which intermittently keeps the thickness of photoresist from decreasing during processes of alternate lithography and electroforming. The experimental results show that the thickness uniformity of micro gear fabricated by the proposed method was improved by 45.7% compared with that fabricated by the traditional method. Meanwhile, the roughness of the middle region of the gear structure was reduced by 17.4%.
ISSN:2072-666X