Supervised machine learning algorithms for predicting student dropout and academic success: a comparative study

Abstract Utilizing a dataset sourced from a higher education institution, this study aims to assess the efficacy of diverse machine learning algorithms in predicting student dropout and academic success. Our focus was on algorithms capable of effectively handling imbalanced data. To tackle class imb...

ver descrição completa

Detalhes bibliográficos
Principais autores: Alice Villar, Carolina Robledo Velini de Andrade
Formato: Artigo
Idioma:English
Publicado em: Springer 2024-01-01
coleção:Discover Artificial Intelligence
Assuntos:
Acesso em linha:https://doi.org/10.1007/s44163-023-00079-z