ϕ-2-Absorbing Submodule

Let R be a commutative ring with identity and M be a unitary R-module. A proper submodule N of M is 2− absorbing if r1, r2, r3 ∈ R, m ∈ M with r1r2r3m ∈ M implies r1r2m ∈ N or r1r3m ∈ N or r2r3m ∈ N. Let ϕ : S(M) −→ S(M) ∪ {ø} be a function where S(M) is the set of all submodules of M. We call a...

Full description

Bibliographic Details
Main Authors: A. Khaksari∗, A. Jafari
Format: Article
Language:English
Published: Islamic Azad University 2012-09-01
Series:Journal of Mathematical Extension
Online Access:http://ijmex.com/index.php/ijmex/article/view/154/93