ϕ-2-Absorbing Submodule
Let R be a commutative ring with identity and M be a unitary R-module. A proper submodule N of M is 2− absorbing if r1, r2, r3 ∈ R, m ∈ M with r1r2r3m ∈ M implies r1r2m ∈ N or r1r3m ∈ N or r2r3m ∈ N. Let ϕ : S(M) −→ S(M) ∪ {ø} be a function where S(M) is the set of all submodules of M. We call a...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Islamic Azad University
2012-09-01
|
Series: | Journal of Mathematical Extension |
Online Access: | http://ijmex.com/index.php/ijmex/article/view/154/93 |