PET: Parameter-efficient Knowledge Distillation on Transformer.
Given a large Transformer model, how can we obtain a small and computationally efficient model which maintains the performance of the original model? Transformer has shown significant performance improvements for many NLP tasks in recent years. However, their large size, expensive computational cost...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2023-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0288060 |