Triple Roman domination subdivision number in graphs

For a graph $G=(V, E)$, a triple Roman domination function is a function $f: V(G)\longrightarrow\{0, 1, 2, 3, 4\}$ having the property that for any vertex $v\in V(G)$, if $f(v)<3$, then $f(\mbox{AN}[v])\geq|\mbox{AN}(v)|+3$, where $\mbox{AN}(v)=\{w\in N(v)\mid f(w)\geq1\}$ and $\mbox{AN}[v]=...

Full description

Bibliographic Details
Main Authors: Jafar Amjadi, Hakimeh Sadeghi
Format: Article
Language:English
Published: Vladimir Andrunachievici Institute of Mathematics and Computer Science 2022-02-01
Series:Computer Science Journal of Moldova
Subjects:
Online Access:http://www.math.md/files/csjm/v30-n1/v30-n1-(pp109-130).pdf