Temporal Patternization of Power Signatures for Appliance Classification in NILM

Non-Intrusive Load Monitoring (NILM) techniques are effective for managing energy and for addressing imbalances between the energy demand and supply. Various studies based on deep learning have reported the classification of appliances from aggregated power signals. In this paper, we propose a novel...

Full description

Bibliographic Details
Main Authors: Hwan Kim, Sungsu Lim
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/10/2931