On Almost Everywhere K-Additive Set-Valued Maps
Let X be an Abelian group, Y be a commutative monoid, K ⊂Y be a submonoid and F : X → 2Y \ {∅} be a set-valued map. Under some additional assumptions on ideals ℐ1 in X and ℐ2 in X2, we prove that if F is ℐ2-almost everywhere K-additive, then there exists a unique up to K K-additive set-valued map G...
第一著者: | |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Sciendo
2024-03-01
|
シリーズ: | Annales Mathematicae Silesianae |
主題: | |
オンライン・アクセス: | https://doi.org/10.2478/amsil-2023-0025 |