On Almost Everywhere K-Additive Set-Valued Maps

Let X be an Abelian group, Y be a commutative monoid, K ⊂Y be a submonoid and F : X → 2Y \ {∅} be a set-valued map. Under some additional assumptions on ideals ℐ1 in X and ℐ2 in X2, we prove that if F is ℐ2-almost everywhere K-additive, then there exists a unique up to K K-additive set-valued map G...

全面介绍

书目详细资料
主要作者: Jabłońska Eliza
格式: 文件
语言:English
出版: Sciendo 2024-03-01
丛编:Annales Mathematicae Silesianae
主题:
在线阅读:https://doi.org/10.2478/amsil-2023-0025