LMIs-Based LPV Control of Quadrotor with Time-Varying Payload

Applications of a quadrotor with payload, particularly for chemical spraying, have increased in recent times. The variation in payload mass over time causes a change in the moments of inertia (MOI). Moreover, large tilt angles are required for fast reference tracking and external disturbance rejecti...

Full description

Bibliographic Details
Main Authors: Azmat Saeed, Aamer I. Bhatti, Fahad M. Malik
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/11/6553
Description
Summary:Applications of a quadrotor with payload, particularly for chemical spraying, have increased in recent times. The variation in payload mass over time causes a change in the moments of inertia (MOI). Moreover, large tilt angles are required for fast reference tracking and external disturbance rejection. These variations in plant parameters (i.e., mass and inertia) and large tilt angles can degrade the control scheme’s performance and stability. This article proposes a linear matrix inequalities (LMIs)-based linear parameter varying (LPV) control scheme for a quadrotor subject to time-varying mass, time-varying inertia, mass flow rate, and large tilt angles. The control strategy is designed by solving LMIs derived from quadratic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">H</mi><mo>∞</mo></msub></semantics></math></inline-formula> performance and D-stability. The robust stability and quadratic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">H</mi><mo>∞</mo></msub></semantics></math></inline-formula> performance are assessed by LMIs. The efficacy of the proposed methodology is established using numerical simulations, and its performance is compared to the linear time-invariant (LTI) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">H</mi><mo>∞</mo></msub></semantics></math></inline-formula> design with pole placement constraints. The results obtained show that the LPV control scheme gives better tracking performance in the presence of time-varying parameters, noise, and external disturbances without actuator saturation. In comparison to the LTI design technique, the proposed LPV scheme improves the rise time (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mi>r</mi></msub></semantics></math></inline-formula>), settling time (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mi>s</mi></msub></semantics></math></inline-formula>), and mean squared error (MSE) by up to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>14</mn><mo>%</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>15</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>30</mn><mo>%</mo></mrow></semantics></math></inline-formula>, respectively. Moreover, smooth transitions are observed in the tilt angles and control signals with the LPV scheme, contrary to the LTI controller, which exhibits significant oscillations.
ISSN:2076-3417