Constrained DFT-based magnetic machine-learning potentials for magnetic alloys: a case study of Fe–Al
Abstract We propose a machine-learning interatomic potential for multi-component magnetic materials. In this potential we consider magnetic moments as degrees of freedom (features) along with atomic positions, atomic types, and lattice vectors. We create a training set with constrained DFT (cDFT) th...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2023-11-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-023-46951-x |