Alternate-day fat diet and exenatide modulate the brain leptin JAK2/STAT3/SOCS3 pathway in a fat diet-induced obesity and insulin resistance mouse model
Introduction Obesity is one of the most burdensome health problems and is closely linked to leptin resistance. The study examined whether an alternate-day high-fat diet (ADF) and/or GLP-1 agonist (exenatide) modulate brain leptin resistance caused by a high-fat diet (HFD). Material and methods Sixt...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Termedia Publishing House
2023-02-01
|
Series: | Archives of Medical Science |
Subjects: | |
Online Access: | https://www.archivesofmedicalscience.com/Alternate-day-fat-diet-and-exenatide-modulate-the-brain-leptin-JAK2-STAT3-SOCS3-pathway,158534,0,2.html |
Summary: | Introduction
Obesity is one of the most burdensome health problems and is closely linked to leptin resistance. The study examined whether an alternate-day high-fat diet (ADF) and/or GLP-1 agonist (exenatide) modulate brain leptin resistance caused by a high-fat diet (HFD).
Material and methods
Sixty adult male mice were divided into 6 groups: (i) normal palatable diet (NPD), (ii) exenatide control (NPD received exenatide) (iii) HFD, (iv) ADF treated, (v) exenatide treated, (vi) ADF and exenatide treated. All animal groups were fed a HFD for 8 weeks, before they received treatment (ADF and/or exenatide) for 8 additional weeks. Body weight was assessed at the start and at the end of the experiment. Lipid profile, brain leptin and its receptor expression with the leptin-sensitive pathway, JAK2/STAT3/SOCS3/PTP1B, fasting blood glucose (FBG), serum insulin, liver metabolic handling via its regulators IRS1/PI3K/GLUT4 for hyperinsulinemia/obesity-induced PDK3/NAFLD2 modification, and liver enzymes were determined at the end of the experiment.
Results
ADF and exenatide reduced body weight and FBG in HFD-obese mice (p < 0.05). The combined ADF and exenatide regimen enhanced the brain anorexic leptin/JAK2/STAT3 and attenuated the SOCS3/PTP1B pathway (p < 0.05). The ADF/exenatide anorexigenic brain effect also modulated liver glucose via IRS1/PI3K/GLUT4 expression (p < 0.05), attenuating NAFLD2 and PDK3 expression (p < 0.05). Liver enzymes and the histopathological profile confirmed the improvement.
Conclusions
In HFD caloric consumption, a combination of ADF and GLP-1 agonist enhances the brain leptin anorexigenic effect with the improvement of the metabolic sequelae of hyperinsulinemia, hyperlipidemia and liver steatosis. |
---|---|
ISSN: | 1734-1922 1896-9151 |