Bayesian optimization approach to quantify the effect of input parameter uncertainty on predictions of numerical physics simulations

An understanding of how input parameter uncertainty in the numerical simulation of physical models leads to simulation output uncertainty is a challenging task. Common methods for quantifying output uncertainty, such as performing a grid or random search over the model input space, are computational...

Full description

Bibliographic Details
Main Authors: Samuel G. McCallum, James E. Lerpinière, Kjeld O. Jensen, Pascal Friederich, Alison B. Walker
Format: Article
Language:English
Published: AIP Publishing LLC 2023-12-01
Series:APL Machine Learning
Online Access:http://dx.doi.org/10.1063/5.0151747