Characterization and Utilization of Disulfide-Bonded SARS-CoV-2 Receptor Binding Domain of Spike Protein Synthesized by Wheat Germ Cell-Free Production System

The spike protein (SP) of SARS-CoV-2 is an important target for COVID-19 therapeutics and vaccines as it binds to the ACE2 receptor and enables viral infection. Rapid production and functional characterization of properly folded SP is of the utmost importance for studying the immunogenicity and rece...

Full description

Bibliographic Details
Main Authors: Yutaro Yamaoka, Sundararaj Stanleyraj Jeremiah, Rikako Funabashi, Kei Miyakawa, Takeshi Morita, Yusaku Mihana, Hideaki Kato, Akihide Ryo
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Viruses
Subjects:
Online Access:https://www.mdpi.com/1999-4915/14/7/1461
Description
Summary:The spike protein (SP) of SARS-CoV-2 is an important target for COVID-19 therapeutics and vaccines as it binds to the ACE2 receptor and enables viral infection. Rapid production and functional characterization of properly folded SP is of the utmost importance for studying the immunogenicity and receptor-binding activity of this protein considering the emergence of highly infectious viral variants. In this study, we attempted to express the receptor-binding region (RBD) of SARS-CoV-2 SP containing disulfide bonds using the wheat germ cell-free protein synthesis system. By adding protein disulfide isomerase (PDI) and endoplasmic reticulum oxidase (ERO1α) to the translational reaction mixture, we succeeded in synthesizing a functionally intact RBD protein that can interact with ACE2. Using this RBD protein, we have developed a high-throughput AlphaScreen assay to evaluate the RBD–ACE2 interaction, which can be applied for drug screening and mutation analysis. Thus, our method sheds new light on the structural and functional properties of SARS-CoV-2 SP and has the potential to contribute to the development of new COVID-19 therapeutics.
ISSN:1999-4915