Skip to content
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
Advanced
  • Ensuring scientific reproducib...
  • Cite this
  • Text this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks

Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks

Computational methods are becoming an increasingly important part of biological research. Using the Rosetta framework as an example, the authors demonstrate how community-driven development of computational methods can be done in a reproducible and reliable fashion.

Bibliographic Details
Main Authors: Julia Koehler Leman, Sergey Lyskov, Steven M. Lewis, Jared Adolf-Bryfogle, Rebecca F. Alford, Kyle Barlow, Ziv Ben-Aharon, Daniel Farrell, Jason Fell, William A. Hansen, Ameya Harmalkar, Jeliazko Jeliazkov, Georg Kuenze, Justyna D. Krys, Ajasja Ljubetič, Amanda L. Loshbaugh, Jack Maguire, Rocco Moretti, Vikram Khipple Mulligan, Morgan L. Nance, Phuong T. Nguyen, Shane Ó Conchúir, Shourya S. Roy Burman, Rituparna Samanta, Shannon T. Smith, Frank Teets, Johanna K. S. Tiemann, Andrew Watkins, Hope Woods, Brahm J. Yachnin, Christopher D. Bahl, Chris Bailey-Kellogg, David Baker, Rhiju Das, Frank DiMaio, Sagar D. Khare, Tanja Kortemme, Jason W. Labonte, Kresten Lindorff-Larsen, Jens Meiler, William Schief, Ora Schueler-Furman, Justin B. Siegel, Amelie Stein, Vladimir Yarov-Yarovoy, Brian Kuhlman, Andrew Leaver-Fay, Dominik Gront, Jeffrey J. Gray, Richard Bonneau
Format: Article
Language:English
Published: Nature Portfolio 2021-11-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-021-27222-7
  • Holdings
  • Description
  • Similar Items
  • Staff View

Internet

https://doi.org/10.1038/s41467-021-27222-7

Similar Items

  • Humatch - fast, gene-specific joint humanisation of antibody heavy and light chains
    by: Lewis Chinery, et al.
    Published: (2024-12-01)
  • Non-H3 CDR template selection in antibody modeling through machine learning
    by: Xiyao Long, et al.
    Published: (2019-01-01)
  • Distinctive Recognition of Flagellin by Human and Mouse Toll-Like Receptor 5.
    by: Vida Forstnerič, et al.
    Published: (2016-01-01)
  • Directed evolution for high functional production and stability of a challenging G protein-coupled receptor
    by: Yann Waltenspühl, et al.
    Published: (2021-04-01)
  • Robustification of RosettaAntibody and Rosetta SnugDock.
    by: Jeliazko R Jeliazkov, et al.
    Published: (2021-01-01)

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs