Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks
Computational methods are becoming an increasingly important part of biological research. Using the Rosetta framework as an example, the authors demonstrate how community-driven development of computational methods can be done in a reproducible and reliable fashion.
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2021-11-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-021-27222-7 |