Dielectric Engineering to Suppress Cell-to-Cell Programming Voltage Interference in 3D NAND Flash Memory

In contrast to conventional 2-dimensional (2D) NAND flash memory, in 3D NAND flash memory, cell-to-cell interference stemming from parasitic capacitance between the word-lines (WLs) is difficult to control because the number of WLs, achieved for better packing density, have been dramatically increas...

Full description

Bibliographic Details
Main Authors: Woo-Jin Jung, Jun-Young Park
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/12/11/1297
Description
Summary:In contrast to conventional 2-dimensional (2D) NAND flash memory, in 3D NAND flash memory, cell-to-cell interference stemming from parasitic capacitance between the word-lines (WLs) is difficult to control because the number of WLs, achieved for better packing density, have been dramatically increased under limited height of NAND string. In this context, finding a novel approach based on dielectric engineering seems timely and applicable. This paper covers the voltage interference characteristics in 3D NAND with respect to dielectrics, then proposes an alternative cell structure to suppress such interference.
ISSN:2072-666X