Chaotic Time Series Forecasting Approaches Using Machine Learning Techniques: A Review
Traditional statistical, physical, and correlation models for chaotic time series prediction have problems, such as low forecasting accuracy, computational time, and difficulty determining the neural network’s topologies. Over a decade, various researchers have been working with these issues; howeve...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-05-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/14/5/955 |