Unsupervised and efficient learning in sparsely activated convolutional spiking neural networks enabled by voltage-dependent synaptic plasticity
Spiking neural networks (SNNs) are gaining attention due to their energy-efficient computing ability, making them relevant for implementation on low-power neuromorphic hardware. Their biological plausibility has permitted them to benefit from unsupervised learning with bio-inspired plasticity rules,...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2023-01-01
|
Series: | Neuromorphic Computing and Engineering |
Subjects: | |
Online Access: | https://doi.org/10.1088/2634-4386/acad98 |