Multimodal fusion: A study on speech-text emotion recognition with the integration of deep learning
Recognition of various human emotions holds significant value in numerous real-world scenarios. This paper focuses on the multimodal fusion of speech and text for emotion recognition. A 39-dimensional Mel-frequency cepstral coefficient (MFCC) was used as a feature for speech emotion. A 300-dimension...
主要な著者: | Yanan Shang, Tianqi Fu |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Elsevier
2024-12-01
|
シリーズ: | Intelligent Systems with Applications |
主題: | |
オンライン・アクセス: | http://www.sciencedirect.com/science/article/pii/S2667305324001108 |
類似資料
-
Emotion recognition and achievement prediction for foreign language learners under the background of network teaching
著者:: Yi Ding, 等
出版事項: (2022-10-01) -
Research on Dual-Emotion Feature Fusion and Performance Improvement in Rumor Detection
著者:: Wen Jiang, 等
出版事項: (2024-09-01) -
Chinese Mathematical Knowledge Entity Recognition Based on Linguistically Motivated Bidirectional Encoder Representation from Transformers
著者:: Wei Song, 等
出版事項: (2025-01-01) -
Named Entity Recognition for Chinese Texts on Marine Coral Reef Ecosystems Based on the BERT-BiGRU-Att-CRF Model
著者:: Danfeng Zhao, 等
出版事項: (2024-07-01) -
Microblog Text Emotion Classification Algorithm Based on TCN-BiGRU and Dual Attention
著者:: Yao Qin, 等
出版事項: (2023-02-01)