Deep Reinforcement Learning by Balancing Offline Monte Carlo and Online Temporal Difference Use Based on Environment Experiences

Owing to the complexity involved in training an agent in a real-time environment, e.g., using the Internet of Things (IoT), reinforcement learning (RL) using a deep neural network, i.e., deep reinforcement learning (DRL) has been widely adopted on an online basis without prior knowledge and complica...

Full description

Bibliographic Details
Main Author: Chayoung Kim
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/10/1685