A new characterization of $A_{p}$ with $p $ and $p-2$ are twin primes
Let $G$ be a finite group and $\pi_{e}(G)$ be the set of elements order of $G$. Let $k \in \pi_{e}(G)$ and $m_{k}$ be the number of elements of order $k$ in $G$. Set nse($G$):=$\{ m_{k} | k \in \pi_{e}(G)\}$. Assume $p$ and $p-2$ are twin primes. We prove that if $G$ is a group such that nse($G$)=ns...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Matemática
2015-09-01
|
Series: | Boletim da Sociedade Paranaense de Matemática |
Subjects: | |
Online Access: | http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/24335 |